21 research outputs found

    Embedding quasi-static time series within a genetic algorithm for stochastic optimization: the case of reactive power compensation on distribution systems

    Get PDF
    This paper presents a methodology for the optimal placement and sizing of reactive power compensation devices in a distribution system (DS) with distributed generation. Quasi-static time series is embedded in an optimization method based on a genetic algorithm to adequately represent the uncertainty introduced by solar photovoltaic generation and electricity demand and its effect on DS operation. From the analysis of a typical DS, the reactive power compensation rating power results in an increment of 24.9% when compared to the classical genetic algorithm model. However, the incorporation of quasi-static time series analysis entails an increase of 26.8% on the computational time required

    An energy credit based incentive mechanism for the direct load control of residential HVAC systems incorporation in day-ahead planning

    No full text
    The increasing operational complexity of power systems considering the higher renewable energy penetration and changing load characteristics, together with the recent developments in the ICT field have led to more research and implementation efforts related to the activation of the demand side. In this manner, different direct load control (DLC) and indirect load control concepts have been developed and DLC strategies are considered as an effective tool for load serving entities (LSEs) with several real-world application examples. In this study, a new DLC strategy tailored for residential air-conditioners (ACs) participating in the day-ahead planning, based on offering energy credits to the enrolled end-users is proposed. The mentioned energy credits are then used by residential end-users to lower their energy procurement costs during peak-price periods. The strategy is formulated as a stochastic mixed-integer linear programming (MILP) model considering uncertainties related to weather conditions. The outcomes regarding the end-user comfort level and economic benefits are also analyzed

    A multi-objective optimization approach to risk-constrained energy and reserve procurement using demand response

    No full text
    The large-scale integration of wind generation in power systems increases the need for reserve procurement in order to accommodate its highly uncertain nature, a fact that may overshadow its environmental and economic benefits. For this reason, the design of reserve procurement mechanisms should be reconsidered in order to embed resources that are capable of providing reserve services in an economically optimal way. In this study, a joint energy and reserve day-ahead market structure based on two-stage stochastic programming is presented. The developed model incorporates explicitly the participation of demand side resources in the provision of load following reserves. Since a load that incurs a demand reduction may need to recover this energy in other periods, different types of load recovery requirements are modeled. Furthermore, in order to evaluate the risk associated with the decisions of the system operator and to assess the effect of procuring and compensating load reductions, the Conditional Value-at-Risk metric is employed. In order to solve the resulting multi-objective optimization problem, a new approach based on an improved variant of the epsilon-constraint method is adopted. This study demonstrates that the proposed approach to risk management presents conceptual advantages over the commonly used weighted sum method

    Evaluation of flexible demand-side load-following reserves in power systems with high wind generation penetration

    No full text
    In this study, a two-stage stochastic programming joint energy and reserve day-ahead market structure is proposed in order to procure the required load-following reserves to tackle with wind power production uncertainty. Reserves can be procured both from generation and demand-side. Responsive aggregations of loads, as well as large industrial consumers are considered. The proposed methodology is evaluated through various simulations performed on the insular power grid of Crete, Greece

    Novel incentive mechanism for end-users enrolled in DLC-based demand response programs within stochastic planning context

    Get PDF
    In this paper, a novel direct load control (DLC) planning based on providing free energy credits to residential end-users for their heating, ventilation, and air conditioning load during demand response (DR) events is proposed. The obtained credit can then be used by the end-users during relatively higher price periods free-of-cost to enable them lowering their energy procurement costs. Furthermore, the resulting reduction in the total household energy consumption considerably decreases the critical load demands in power systems, which is of vital importance for load-serving entities in maintaining the balance between supply and demand during peak load periods. In this regard, the aforementioned energy credits-based incentive mechanism is proposed for end-users enrolled in the DLC-based DR program, as a new contribution to the existing literature, testing it in a stochastic day-ahead planning context

    Optimal household appliances scheduling under day-ahead pricing and load-shaping demand response strategies

    Get PDF
    In this paper, a detailed home energy management system structure is developed to determine the optimal dayahead appliance scheduling of a smart household under hourly pricing and peak power-limiting (hard and soft power limitation)-based demand response strategies. All types of controllable assets have been explicitly modeled, including thermostatically controllable (air conditioners and water heaters) and nonthermostatically controllable (washing machines and dishwashers) appliances, together with electric vehicles (EVs). Furthermore, an energy storage system (ESS) and distributed generation at the end-user premises are taken into account. Bidirectional energy flow is also considered through advanced options for EV and ESS operation. Finally, a realistic test-case is presented with a sufficiently reduced time granularity being thoroughly discussed to investigate the effectiveness of the model. Stringent simulation results are provided using data gathered from real appliances and real measurements

    Coordinated operation of a neighborhood of smart households comprising electric vehicles, energy storage and distributed generation

    Get PDF
    In this paper, the optimal operation of a neighborhood of smart households in terms of minimizing the total energy procurement cost is analyzed. Each household may comprise several assets such as electric vehicles, controllable appliances, energy storage and distributed generation. Bi-directional power flow is considered both at household and neighborhood level. Apart from the distributed generation unit, technological options such as vehicle-to-home and vehicle-to-grid are available to provide energy to cover self-consumption needs and to inject excessive energy back to the grid, respectively. The energy transactions are priced based on the net-metering principles considering a dynamic pricing tariff scheme. Furthermore, in order to prevent power peaks that could be harmful for the transformer, a limit is imposed to the total power that may be drawn by the households. Finally, in order to resolve potential competitive behavior, especially during relatively low price periods, a simple strategy in order to promote the fair usage of distribution transformer capacity is proposed

    Demand response driven load pattern elasticity analysis for smart households

    No full text
    The recent interest in smart grid vision enables several smart applications in different parts of the power grid structure, where specific importance should be given to the demand side. As a result, changes in load patterns due to demand response (DR) activities at end-user premises, such as smart households, constitute a vital point to take into account both in system planning and operation phases. In this study, the assessment of the impacts of pricing based DR strategies on smart household load pattern variations is provided. The household load data sets are acquired from a provided model of a smart household, including appliance scheduling. Then, an artificial neural network (ANN) approach based on Wavelet Transform (WT) is employed for the forecasting of responsive residential load behaviors to different pricing schemes. From the literature perspective this study contributes by considering DR impacts on load pattern forecasting, being a very useful tool for market participants such as aggregators in future pool-based market structures, or for load serving entities to discuss potential change requirements in existing DR strategies, or even to effectively plan new ones

    Comprehensive optimization model for sizing and siting of DG units, EV charging stations and energy storage systems

    No full text
    The sizing and siting of renewable resources-based distributed generation (DG) units has been a topic of growing interest, especially during the last decade due to the increasing interest in renewable energy systems and the possible impacts of their volatility on distribution system operation. This paper goes beyond the existing literature by presenting a comprehensive optimization model for the sizing and siting of different renewable resources-based DG units, electric vehicle charging stations, and energy storage systems within the distribution system. The proposed optimization model is formulated as a second order conic programming problem, considering also the time-varying nature of DG generation and load consumption, in contrast with the majority of the relevant studies that have been based on static values
    corecore